Optimum duration of perioperative antibiotic therapy in patients with acute non-perforated appendicitis: a prospective randomized trial

Mohammad Taghi Rajabi-Mashhadia, Seyed Hadi Mousaviib, c, Khosravi-Mashizim Hac, Majid Ghayour-Mobarhand, e, Amirhossein Sahebkarda

aEndoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Faculty of Medicine, bDepartment of Pharmacology and Pharmacological Research Centre of Medicinal Plants, School of Medicine, cMedical Toxicology Research Center, dCardiovascular Research Center, eDepartment of Nutrition, Faculty of Medicine, fBiotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran

Background: Inappropriate use of antibiotics for perioperative antimicrobial therapy can cause considerable complications including emergence of antibiotic resistance, risk of drug reactions and economic implications.

Objective: We assessed the use of antibiotics in patients with acute non-perforated appendicitis.

Methods: The study was performed on 317 patients aged 15 to 70 years with non-perforated appendicitis who were undergoing open appendectomy. All patients received intravenous ceftriaxone (1 g) and metronidazole (500 mg) immediately after appendectomy. Patients were randomized into one of the following three treatment protocols; A: no further antibiotics, B: three more doses of antibiotics for 1 day (ceftriaxone 1 g every 12 hours and metronidazole 500 mg every 8 hours), or C: a 3-day course of antibiotics (ceftriaxone 1 g every 12 hours and metronidazole 500 mg every 8 hours) as the postoperative antibiotic regimen. Postoperative infective complication was the primary endpoint within the 10-day postoperative follow-up period.

Results: A total of 291 patients (female 37.5%), were subjected to final analysis. This included 97 patients in each group. Twenty-six patients failed to return for wound assessment. The groups were comparable in baseline characteristics including age and gender. The Overall frequency of surgical site infection was 6.25%, with 8.2% in group A, 6.25% in group B and 5.2% in group C. The rate of postoperative surgical infection was not significantly different among all groups. There were no perioperative mortalities. No untreated control group could be included for ethical reasons.

Conclusion: A combined preoperative single dose of metronidazole and ceftriaxone appears to be sufficient for the prevention of surgical site infections in patients with uncomplicated appendicitis.

Keywords: Acute appendicitis, ceftriaxone, metronidazole, prophylactic antibiotic therapy
Methods
This prospective randomized study was conducted from May 2006 to May 2007 at the Ghaem Hospital (Mashhad, Iran). Patients aged 15 to 70 years who were admitted with the clinical diagnosis of acute appendicitis, and were undergoing open appendectomy through a right lower quadrant incision were considered to be eligible for this study.

The project was approved by the Ethics Committee of the Mashhad University of Medical Sciences. Informed consent for the study was obtained from patients. Excluded were patients with diabetes mellitus, history of preadmission antibiotics and/or steroid and/or immunosuppressive therapy, allergy to any of the medications, ruptured appendicitis and appendiceal mass or abscess formation. Pregnant women and patients who refused to consent to the study were also excluded.

Intravenous ceftriaxone (1 g) and metronidazole (500 mg) were given at the time of induction of general anesthesia. Immediately after appendicectomy, patients who were diagnosed with non-perforated appendicitis were randomized into one of the following 3 treatment protocols; A: no further antibiotics, B: three more doses of i.v. antibiotics for 1 day (ceftriaxone (1 g) every 12 hours and metronidazole (500 mg) every 8 hours), or C: a 3-day course of antibiotics (ceftriaxone (1 g) every 12 hours and metronidazole (500 mg) every 8 hours) as the postoperative antibiotic regimen. Open appendicectomy was performed through right lower quadrant incision by muscle-splitting approach and appendices were removed in the standard fashion.

Operating time was recorded from the time of first incision to closing skin, ranging between 32 to 46 minutes. All removed appendices were examined histologically. The wound was inspected daily for signs of infection, defined as discharge of pus that required surgical drainage before discharge. After discharge, all patients were followed for wound infection for 10 days.

Statistical analyses were performed using SPSS software (version 11). Group comparisons were made using one-way analysis of variance (ANOVA) for numerical variables, and chi-square (χ²) test for categorical variables. A p-value of <0.05 was considered to be statistically significant.

Results
During the study period, 317 patients were diagnosed intraoperatively to have non-perforated appendicitis and underwent open appendectomy. Among them, 26 patients failed to return for wound assessment. Finally, 291 patients (mean age: 26.20±10.28; females: 37.5%), were subjected to final analysis. Of these, 97 patients were in group A, 97 patients received 1-day (group B) and 97 patients received 3-day postoperative antibiotic regimen as described above. The groups were comparable in baseline characteristics including age and gender as shown in Table 1. Duration of hospitalization was not statistically different between groups B and C (p >0.05). However, both B and C group had significantly higher length of hospitalization compared to group A (p <0.001).

Nineteen surgical site infections were identified in 291 subjects, yielding an overall wound infection rate of 6.52%. Eight patients in group A (8.2%), 6 patients in group B (6.25%), and 5 patients in group C (5.2%) had wound infections (Figure 1). These frequencies of postoperative surgical infection were not significantly different among the groups. During the study period, none of the patients developed intra-abdominal collections or abscess nor other antibiotic related complications. There was also no perioperative mortality.

Table 1. Characteristics of study groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>291</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>26.20±10.28</td>
<td>24.77±8.79</td>
<td>26.82±11.51</td>
<td>26.93±10.33</td>
</tr>
<tr>
<td>Male:Female</td>
<td>182:109</td>
<td>63:34</td>
<td>56:41</td>
<td>63:34</td>
</tr>
<tr>
<td>Duration of hospitalization (days)</td>
<td>2.80±0.52</td>
<td>2.24±0.43</td>
<td>3.02±0.28*</td>
<td>3.11±0.31*</td>
</tr>
</tbody>
</table>

*Significant difference compared to group A
Discussion

Despite improved surgical techniques, postoperative complications including wound infection and intra-abdominal abscess still account for a significant rate of morbidity. It has been shown that antibiotic prophylaxis is effective in prevention of postoperative complications in appendectomised patients, whether the administration is given pre-, peri- or post-operatively [2].

There is variation in the incidence of postoperative infection for non-perforated appendicitis, ranging from 0 to 11.7% [17-21]. These discrepancies could be attributed to differences in the number of patients, type of antibiotics used, follow-up duration and definition of wound infection. In our study, wound infection rate was between 5.2 to 8.2% which is consistent with previous studies [22].

In the present trial, there was no intra-abdominal abscess or collection. In consistence with a previous study [20], our findings showed that a single dose of prophylactic antibiotic is enough to prevent infective complications following open appendectomy for non-perforated appendicitis. Furthermore, our results are supported by recent randomized controlled trials [23, 24], showing that even in complicated appendicitis, prolonged use of antibiotics did not decrease the rate of postoperative infective complications.

The relatively few number of included subjects was a limitation of the present study. Therefore, conducting larger trials may be required to detect significant differences among treatment arms, if any. Taken together, a combined single dose of metronidazole and ceftriaxone preoperatively appears to be sufficient to prevent surgical site infections in patients with uncomplicated appendicitis. We recommend that preoperative antibiotic prophylaxis be administered to all patients undergoing appendectomy.

Acknowledgment

This study was supported by Mashhad University of Medical Sciences. The authors would like to thank Dr. Esmaeili for doing statistical analysis and the nurses of the Ghaem Hospital Surgery Department who followed and took care of the patients. The authors have no conflict of interest to declare.

References


