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Abstract   

There is a complex interaction between genetic, metabolic, and environmental factors in 

determining the risk of Metabolic Syndrome (MetS). The aim of this study was to investigate the 

interaction between the dietary intake of iron, copper, zinc, manganese, selenium and iodine 

(assessed by 24 recall) with vascular endothelial growth factor variants (rs6921438, rs4416670, 

rs6993770, and rs10738760), on the risk of metabolic syndrome. Two hundred and forty eight 

individuals with MetS and 100 individuals without MetS recruited. Dietary intake and the daily 

average of energy and nutrients intake were obtained by questionnaire and quantified using Diet 

Plan 6 software. DNA was extracted from EDTA anticoagulated whole blood. The SNPs were 

assessed using using a Sequenom iPLEX Gold assay. Data analysis was undertaken using the 

Student’s t-test, χ2 test and logistic regression using SPSS 11.5 software. There was a significant 

interaction between low dietary iron intake with rs6993770 (β= 0.10, p<0.05), and a low dietary 

zinc and a high manganese intake with rs6921438 in relation to the presence of metabolic 

syndrome (β= -0.17, p<0.05, β= -0.30, p<0.05, respectively). Our data showed the association of 

rs6993770 with iron intake and rs6921438 with zinc and manganese intake, indicating further 

investigating in a larger population to evaluate their values.  

Key words: Metabolic syndrome, VEGF, polymorphism, SNPs, trace element  
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 Introduction   

Metabolic syndrome (MetS) is defined by a clustering of four major cardiovascular risk factors: 

Obesity, insulin resistance (hyperglycemia), dyslipidemia (low serum HDL cholesterol, and high 

serum fasted triglycerides), and arterial hypertension (Azimi-Nezhad et al. 2012). The prevalence 

of MetSis increasing in the urbanized world and in developing nations (Li et al. 2013). Although 

the exact mechanism leading to MetS is still unclear although there is likely to be a complex 

interaction between genetic, metabolic, and environmental factors (Li et al. 2013). Excess weight 

increases the risk of multiple conditions that can contribute to the aetiology of MetS. 

The polypeptide VEGF is a potent regulator of angiogenesis (Shahbazi 2002). It is generally 

accepted that the vascular endothelial growth factor/vascular endothelial growth factor receptor 

(VEGF/ VEGFR) system accounts for much of the angiogenic activities in adipose tissue (Lijnen 

2008). Angiogenesis involves the construction of new capillaries from main blood vessels, and it 

is a pivotal mechanism for transporting essential nutrients into the cells. The VEGF gene 

contains several polymorphic regions known to influence VEGF expression (Choi et al. 2011). 

Angiogenesis and vasculogenesis are dependent on several growth factors and their associated 

tyrosine kinases. VEGF acts both as an activator and as a survival factor for endothelial cells of 

newly formed blood vessels (Wada et al. 2010). Neovascularization refers to the formation of 

new blood vessels. This important biological process is known to be sensitive to copper levels as 

lowering copper levels appears to be a potentially effective antiangiogenic approach to cancer 

treatment (Brewer et al. 2005), and  copper egress is induced by VEGF, and this dynamic 

developmental process is required for endothelial tube formation (Qin et al. 2006).  
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A genome-wide association study (GWAS), identified four single-nucleotide polymorphisMetS 

(SNPs), (rs6921438, rs4416670, rs6993770, and rs10738760), that explained up to 50% of the 

heritability of serum VEGFA (Stathopoulou et al. 2013).  

Trace elements such as iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), iodine (I) and 

selenium (Se) are essential for optimum metabolic function. These elements serve a variety of 

functions including catalytic, structural and regulatory activities in which they interact with 

macromolecules such as enzymes, pro-hormones, presecretory granules and biological 

membranes (Aggett 1985). Some trace elements, for example zinc, iron, selenium and copper 

play important roles in cellular and molecular processes in biology.  

Cardiovascular disease is the leading cause of death, which is an important consequence of MetS, 

and an imbalance of trace elements and metals appears to be a possible cause of coronary heart 

disease (CHD) (Easter Renee et al. 2010, Mutakin et al. 2013). Silva et al (2013) showed that the 

trace elements  iron, copper and vascular endothelial growth factor are related and indicating 

higher plasma levels of these elements may be associated with the angiogenic process in breast 

cancer. To overcome the significant gap between molecular biology, physiology and more 

traditional nutrition research, nutrigenomics has been initiated as a new innovative strategy 

which focusing on gene-environment interactions and the relevance of genotype changes e.g. 

single nucleotide polymorphisMetS (SNPs) for individual variation in responses to food, dietary 

pattern and susceptibility to develop nutrition-related diseases (Afman et al. 2012). The 

investigation of the inetractions of these new genetic variants with dietary trace element in the 

pathogenesis of MetS might give some insight into the relationship between gene variants 

affecting the expression of VEGF regulating and dietary trace elements. We therefore 
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investigated whether the interaction between rs6921438, rs4416670, rs6993770, and rs10738760 

SNPs and dietary trace element are associated with the risk of MetS. 

  

Method and material:  

Subjects:  

A total of 350 men and women were recruited from three areas in Mashhad, North East of Iran, 

using a stratified cluster random method. The diagnosis of MetS was based on the modified 

International Diabetes Federation (IDF) criteria (Hadaegh et al. 2009). The criteria comprised: 

abdominal obesity (waist circumference ≥94 cm for men and ≥80 cm for women),  and any two 

of the following factors: triglycerides >1.7 mmol/L (>150 mg/dl), or treatment for dyslipidemia; 

high-density lipoprotein-cholesterol (HDL-C) <1.03 mmol/L (<40 mg/dl) in men and <1.29 

mmol/L (<50 mg/dl) in women; blood pressure ≥130/85 mmHg or antihypertensive treatment; 

fasting blood glucose ≥5.6 mmol/L (>100 mg/dl) or treatment for diabetes. Patients who were on 

oral contraceptives, or hormone replacement therapy, antioxidant and mineral supplements and 

herbal remedies as well as pregnant women and patients with chronic disease were excluded 

from the study. None of the subjects had overt clinical features of infection, or chronic 

inflammatory disease and all of subjects were negative for HBS antigen, anti-HCV antibody, and 

anti-HIV antibody. From 350 subjects, 248 patients were diagnosed with METS through physical 

exam and laboratory measurements, and 100 control s were recruited.  Two subjects were 

excluded for the complete questioners. The study protocol was approved by the Ethics 

Committee of Mashhad University of Medical Sciences (Mashhad, Iran). Written informed 

consent was obtained from all subjects prior to their participation in the study.  
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Anthropometric measurements and data collection 

The demographic, anthropometric and lifestyle data were collected by two trained health care 

professionals. The height , weight and waist circumference (WC) were measured using standard 

methods (Azimi-Nezhad  et al. 2012). WC was determined by measuring waist diameter in the 

level of midpoint between iliac crests and lower border of tenth rib (Azimi-Nezhad et al. 2012). 

The average of three measurements was considered as WC. Body mass index (BMI) was 

calculated by weight in kilogram divided to square of height in meter (kg/m2).  

 Biochemical analysis  

A full fasted lipid profile, comprising of total cholesterol, triglycerides, high-density lipoprotein 

cholesterol (HDLC), low-density lipoprotein cholesterol (LDL-C), serum high sensitive C-

reactive protein (hs-CRP) and 12 hour fasting blood glucose were determined for each patient. 

Serum lipid and fasting blood glucose concentrations were measured by enzymatic methods.   

 Dietary assessment   

Dietary intake was assessed using 24 hour recall. Research dieticians provided instructions to the 

subjects with a booklet with letters representing small, medium, or large portions. The 

participants were asked to record a detailed description of all foods, beverages in 24 hour recall 

questionnaire. All records were checked by a dietician on completion and any incomplete 

information was clarified. The daily average of energy and nutrients intake was calculated by 

using the Diet plan6 software with Iranian food nutrients.  

Genotyping:  
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 DNA was extracted from all participants, and relative bio banks have been constructed in the 

BRC IGE-PCV. The SNPs rs6921438, rs4416670, rs6993770, and rs10738760 were genotyped 

using Geno screen© (http://genoscreen.fr) using a Sequenom® iPLEX Gold assay (Medium 

Throughput Genotyping Technology) (Services 2013) and in Kbioscience 

(http://www.kbioscience.co.uk) using the competitive allele-specific PCR (KASP) chemistry 

coupled with a FRET-based genotyping system (http://www.kbioscience.co.uk/reagents/ 

KASP/KASP.html)  

Statistical analysis:  

The Hardy Weinberg equation was used to determine whether the proportion of each genotype 

obtained was in agreement with expected values calculated from allele frequencies. MetS and 

control groups were compared using the Student’s t-test for continuous variables and the χ2 test 

for categorical variables. Logistic regression analysis was used for calculating interaction of 

VEGF genetic variants with the trace elements intake in association with metabolic syndrome. In 

fact a very different issue from confounding is whether the presence or absence of a variable 

changes the effect of exposure on disease that called effect modification (Fletcher et al. 2013). In 

this analysis the effects of modification or the interaction term (SNPs × trace element) variable 

was calculated for each trace element and VEGF SNPs and then regression β for the risk of their 

interaction and metabolic syndrome was obtained. (Fletcher et al. 2013). Sex, age, smoking 

status and serum hs-CRP were adjusted (Askari et al. 2013). A p-value of 0.05 or less was 

considered as statistically significant and Statistical analysis was performed with SPSS 11.5 

software.  

 

http://www.kbioscience.co.uk/
http://www.kbioscience.co.uk/
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Results:   

The characteristics of subjects with and without MetS are shown in Table 1. Weight, Body Mass 

Index (BMI), hip and waist circumference, systolic and diastolic blood pressure and Triglyceride 

were significantly higher in metabolic syndrome subjects (P<0.001). Comparing MetS subjects 

with those without MetS, there were no significant differences in age, smoking statue and serum 

LDL- c. Serum levels of hs-CRP were significantly higher in MetS than in non-MetS subjects 

(Table 1). Dietary intakes of subjects are presented in table 2. There were no significant 

differences for trace elements intake apart from total dietary energy, between MetS and non-

MetS subjects. The characteristics of the genotyped  

The SNPs data are shown in Table 3. All SNPs in both populations were consistent with the 

Hardy-Weinberg equilibrium.  Effect modification or interaction between VEGF SNPs and trace 

elements intake are presented in table 4. After adjustment for age, gender, smoking statue and 

serum hs-CRP,  the CT and CC genotype of rs4416670 were significantly associated with the 

presence of MetS when considering dietary iron intake and the iron – SNPs interaction term in 

the analysis (β=1.48, P<0.05, β=2.46, P<0.05) respectively. This association was also seen for 

CT genotype along with copper, zinc, manganese and iodine variable in the risk of MetS 

(p<0.05) while there was no significant association between iron intake and rs4416670 SNP. In 

Table 5 interaction between zinc, manganese intake and rs6921438  

SNPs had a significant negative effect on the risk of MetS (β=-0.16, P=0.02, β=-0.31, P=0.02 

respectively). As shown in table 6, the interaction between iron intake and rs6993770 SNPs also 

had a significant positive effect on the risk of MetS (β=0.10, P= 0.04) but there was no 

interaction between trace elements intake and rs10738760 SNPs on the risk of MetS as shown in 

table 7.   
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Discussion:   

Nutrigenetics has emerged as a multidisciplinary field focusing on studying the interactions 

between nutritional and genetic factors and health outcomes (Perez-Martinez et al. 2008, 

Ordovas et al. 2004). Recent advances in nutrigenetics and nutrigenomics, two fields with 

distinct approaches to elucidate the interaction between diet and genes but with a common 

ultimate goal to optimize health through the personalization of diet, are providing powerful 

approaches to unravel the complex relationship between nutritional contents, genetic single 

nucleotide polymorphisMetS (SNPs), and the biological system as a whole (Perez-Martinez et al. 

2012).   

In this study for the first time we have shown the interactions between 4 SNPs of the VEGF gene 

that were independently associated with serum VEGF levels (rs6921438 and rs4416670 on 

chromosome 6p21.1, rs6993770 on chromosome 8q23.1, and rs10738760 on chromosome 

9p24.2) (Debette et al. 2011), and the intake of trace elements in association with the risk of 

MetS. Dietary iron intake interacted with the presence of the rs6993770 SNPs in determining the 

risk of MetS. Iron deficiency appeared to interact with the rs6993770 SNP (that regulates serum 

level of VEGF), in the risk of MetS. Furthermore, the CT and CC genotypes of the rs4416670 

SNP along with low intake of iron, copper, zinc, manganese and iodine was associated with the 

risk of MetS in comparison with TT genotype. Iron deficiency has been shown to be an 

additional important factor in enhancing VEGF concentrations in premenopausal women which 

can also result in hypoxic conditions in cancer tissue due to low hemoglobin concentrations in 

red blood cells (Jian et al. 2014, Xi et al. 2008). An association between low hemoglobin 

concentrations and increased serum VEGF concentrations also has also been reported in patients 

with cancer (Dunst et al.1999), so iron deficiency and low hemoglobin concentrations had the 
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significant relationship with serum VEGF. As stated previously, angiogenesis that activated by 

VEGF involves in construction new capillaries from main blood vessels which is a pivotal 

mechanism for shipping essential nutrients such as iron to the cells.  

We also showed a negative effect of the interaction between low detary zinc intake, high 

manganese intake and the rs6921438 SNPs in association with the risk of MetS. Bredow et al 

(2005), indicated in contrast with our finding that in nonpulmonary cell lines, manganese (Mn) 

induces cellular expression of VEGF in vitro. These data suggest that Mn might promote changes 

in pulmonary angiogenic growth factor expression, which, over time, could affect lung 

vasculature morphology, leading to enhanced susceptibility to diseases but in our study there was 

a negative interaction between Mn and VEGF regulatory SNPs. It was shown that intracellular 

zinc deprivation resulted in increased VEGF production by prostate cancer cells (Golovine et al. 

2008). Our results suggest that deficiency of some dietary factors may result in increased serum 

VEGF and more angiogenesis, affecting the transportation of essential nutrients to the body cells 

(Choi et al. 2011).  

Understanding the biological impact of gene-environment for example, nutrients, interactions 

will provide a key insight into the pathogenesis and progression of diet-related polygenic 

disorders. These studies indicate that therapeutic dietary therapy may require a 'personalized 

nutrition' approach, wherein a particular genetic profile may determine responsiveness of patients 

to specific dietary nutrient interventions. Not measuring serum  levels of VEGF  and trace 

elements may be  one important  limitation of our study. In order to understand the role of 

elements in the their interaction with VEGF SNPs we need further examinations with wider 

populations.  
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Conclusions:   

This study shown that in association with metabolic syndrome low iron intake had a positive 

interaction with rs6993770 SNPs while low zinc and high manganese intake had a negative 

interaction with rs6921438 SNPs. Finally, the described procedure of determination of elemental 

intake and their interaction with angiogenesis factors in this study could become a 

complementary diagnostic and therapeutic tool in medicine field.  
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Table 

   
Table 1: Baseline Characteristics of study population  

 Variable  Controls (n=100)  Metabolic Syndrome (n=248)  
Age (year)  50.92±8.01  51.33±7.34  
     

 

Current smoker  16(16.0%)  47(18.95%)  
Ex- smoker  10(10.0%)  19(7.66%)  
Never smoker  74(74.0%)  182(73.38%)  
LDL-C (mg/dl)  117.01±31.99  118.57±38.60  
hs-CRP (mg/L)  1.47(1.03-3.45)  2.13(1.35-3.96)**  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Data presented as mean ± SD for normal variables and median for abnormal variables  
*p<0.05, **p<0.01, ***p<0.001, compared to Controls  
Abbreviations: BMI: Body Mass Index, SBP: Systolic blood pressure, DBP: diastolic blood pressure, FBG: 
Fasting Blood Glucose,  TC: Total Cholesterol, hs-CRP: High sensitivity C-reactive protein,  LDL-C: Low density 
lipoprotein Cholesterol , HDL: high density lipoprotein Cholesterol,   

 

  

  

  
  

Gender n (%)  
Male  

 
47(47.0%)  

 
58(23.38%) ***  

Female  53(53.0%)  190(76.61%) ***  

Smoking       

Weight (kg)  70.65±12.22  76.51±12.21***  
BMI (kg/m2)  27.24±4.36  30.61±4.21***  

Hip circumference(cm)  102.55±8.92  106.83±9.22***  

Waist circumference (cm)  93.62±11.71  100.95±9.86***  

SBP (mmHg)  120.99±16.74  130.78±20.19***  

DBP (mmHg)  78.33±9.70  84.37±12.71***  

FBG (mg/dl)  91.17±43.97  92.65±31.24  

TC (mg/dl)  190.79±37.92  197.60±42.23  
HDL-C (mg/dl)  45.77±10.70  38.70±6.83***  

Triglyceride (mg/dl)  110(72-135)  173(136-230.5) ***  
Metabolic syndrome components   
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Table 2:  Nutritional intake of study population    

Variable  Controls (n=100)  Metabolic 
Syndrome(n=248)  

Energy (Kcal/day)  1660.91±623.05  1830.04±665.89*  
Iron (mg/ day)  10.95±6.16  10.14±3.95  
Copper (mg/day)  0.69±1.61  0.60±1.44  
Zink (mg/day)  7.29±3.35  7.02±2.46  
Manganese 
(mg/day)  

4.01±1.76  3.77±1.21  

Selenium (mg/day)  29.65±17.79  34.20±25.16  
Iodine (µg/day)  112.93±87.48  96.97±74.59  

Data were mean ± SD  
*p<0.05, **p<0.01, ***p<0.001, compared to Controls  
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Table 3. Characteristics of the four studied genetic variants  

  
 

            

SNP  Minor  Direction ofplasma VEGFA effect on a  Variance VEGFA explained 

(%) of  plasma   function allele  

 
6  rs6921438  A  -0.72  41.2  Intergenic  
6  rs4416670  C  -0.13  1.5  Intergenic  
8  rs6993770  T  -0.17  2.0  Intronic  
9  rs10738760  G  -0.28  5.0  Intergenic  

  
a according to the effect size in the discovery cohort (VEGFA values in ng/1, log -transformed)  
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Table 4: Interaction between trace elements intake and VEGF SNPs  
  

    Model 1  Model 2*  
Variable  Genotype  β  P  β  P  
rs4416670  TT  Normal  -      

CT  0.37  0.21  0.45  0.14  
CC  0.31  0.35  0.32  0.349  

rsA*Iron  TT  -  -  -  -  
CT  1.48  0.01  1.28  0.003  
CC  2.46  0.03  1.63  0.01  

rsA*Iron  -0.10  0.05  -0.05  0.03  
rsA*Copper  TT  -  -  -  -  

CT  0.58  0.06  0.69  0.03  
CC  0.48  0.19  0.49  0.19  

rsA*Copper  0.03  0.76  0.02  0.84  
rsA*Zinc  TT  -  -  -  -  

CT  0.90  0.03  0.97  0.02  
CC  1.00  0.13  0.97  0.15  

rsA*Zinc  -0.03  0.43  -0.02  0.47  
rsA*Manganese   TT  -  -  -  -  

CT  0.98  0.01  1.10  0.01  
CC  1.23  0.05  1.31  0.05  

rsA*Manganese  -0.08  0.21  -0.09  0.19  
rsA*Selenium   TT  -  -  -  -  

CT  0.44  0.22  0.53  0.16  
CC  0.14  0.76  0.12  0.80  

rsA*Selenium  0.007  0.25  0.007  0.23  
rsA*Iodine  TT  -  -  -  -  

CT  0.75  0.03  0.86  0.01  
CC  0.71  0.10  0.74  0.10  

rsA*Iodine  0.00  0.56  0.00  0.50  
  
Predictors in model1 analysis were rs4416670, iron, copper, zinc, selenium, Manganese and Iodine  
*  

Adjusted for age, gender, smoking and hs-CRP  
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Table 5: Interaction between trace elements intake and VEGF SNPs  

    Model 1  Model 2*  
Variable  Genotype  β  P  β  P  
rs6921438  GG  Normal  -  -  -  

AG  -0.28  0.42  -0.23  0.53  
AA  -0.21  0.56  -0.16  0.66  

rsB *Iron  GG  -  -  -  -  
AG  0.21  0.71  0.21  0.72  
AA  0.86  0.36  0.81  0.41  

rsB*Iron  -0.03  0.32  -0.03  0.41  
rsB *Copper  GG  -  -  -  -  

AG  -0.05  0.88  -0.02  0.95  
AA  0.28  0.53  0.31  0.52  

rsB *Copper  -0.27  0.16  -0.26  0.22  
rsB *Zinc  GG  -  -  -  -  

AG  0.98  0.09  0.98  0.10  
AA  2.46  0.01  2.40  0.03  

rsB  *Zinc  -0.17  0.01  -0.16  0.02  
rsB *Manganese   GG  -  -  -  -  

AG  0.95  0.13  1.02  0.12  
AA  2.46  0.04  2.57  0.03  

rsB *Manganese  -0.30  0.03  -0.31  0.03  
rsB *Selenium   GG  -  -  -  -  

AG  0.21  0.65  0.22  0.64  
AA  0.73  0.31  0.66  0.34  

rsB *Selenium  -0.01  0.26  -0.009  0.35  
rsB*Iodin  GG  -  -  -  -  

AG  -0.08  0.85  -0.13  0.78  
AA  0.14  1.15  -0.03  0.96  

rsB *Iodin  0.00  0.81  0.00  0.81  
  
Predictors in model1 analysis were rs6921438, iron, copper, zinc, selenium, Manganese and Iodine  
*  

Adjusted for age, gender, smoking and hs-CRP  
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Table 6: Interaction between trace elements intake and VEGF SNPs  

    Model 1  Model 2*  
Variable  Genotype  β  P  β  P  
rs6993770  AA  Normal  -  -  -  

AT  0.18  0.47  0.29  0.27  
TT  0.08  0.83  0.09  0.82  

rsC *Iron  AA  -  -  -  -  
AT  -1.02  0.10  -0.85  0.17  
TT  -2.03  0.06  -1.94  0.08  

rsA*Iron  0.10  0.04  0.10  0.04  
rsC *Copper  AA  -  -  -  -  

AT  0.12  0.70  0.20  0.53  
TT  0.10  0.84  0.06  0.90  

rsA*Copper  -0.001  0.99  0.05  0.80  
rsC *Zinc  AA  -  -  -  -  

AT  0.21  0.74  0.38  0.56  
TT  0.29  0.81  0.36  0.77  

rsA*Zinc  -0.01  0.83  -0.04  0.51  
rsC *Manganese   AA  -  -  -  -  

AT  0.02  0.97  0.31  0.65  
TT  -0.07  0.95  0.29  0.82  

rsA*Manganese  0.01  0.91  -0.02  0.89  
rsC *Selenium   AA  -  -  -  -  

AT  -0.49  0.30  -0.38  0.43  
TT  -1.02  0.22  -1.05  0.22  

rsA*Selenium  0.01  0.15  0.01  0.12  
rsC*Iodine  AA  -  -  -  -  

AT  0.25  0.54  0.47  0.27  
TT  0.44  0.57  0.59  0.45  

rsA*Iodine  -0.001  0.50  -0.002  0.40  
Predictors in model1 analysis were rs6993770, iron, copper, zinc, selenium, Manganese and Iodine  
*  

Adjusted for age, gender, smoking and hs-CRP  
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Table 7: Interaction between trace elements intake and VEGF SNPs  

  
  

    Model 1  Model 2*  
Variable  Genotype  β  P  β  P  
rs10738760  AA  Normal  -  -  -  

AG  0.32  0.22  0.32  0.23  
GG  0.21  0.52  0.21  0.52  

rsD *Iron  AA  -  -  -  -  
AG  0.04  0.70  0.03  0.94  
GG  0.06  0.94  -0.001  0.99  

rsD *Iron  0.01  0.77  0.01  0.67  
rsD *Copper  AA  -  -  -  -  

AG  0.40  0.22  0.43  0.21  
GG  0.71  0.13  0.74  0.13  

rsD *Copper  -0.29  0.18  -0.28  0.23  
rsD *Zinc  AA  -  -  -  -  

AG  -0.58  0.36  -0.47  0.47  
GG  -1.00  0.37  -0.85  0.46  

rsD *Zinc  0.09  0.19  0.08  0.25  
rsD *Manganese   AA  -  -  -  -  

AG  -0.11  0.87  0.10  0.88  
GG  -0.21  0.87  0.17  0.90  

rsD *Manganese  0.08  0.59  0.04  0.80  
rsD *Selenium   AA  -  -  -  -  

AG  0.31  0.48  0.40  0.39  
GG  0.71  0.35  0.85  0.29  

rsD *Selenium  -0.004  0.65  -0.006  0.56  
rsD*Iodine  AA  -  -  -  -  

AG  -0.03  0.94  0.10  0.82  
GG  0.001  0.99  0.16  0.81  

rsD *Iodine  0.001  0.50  0.00  0.75  
  
Predictors in model1 analysis were rs10738760, iron, copper, zinc, selenium, Manganese and Iodine  
*  

Adjusted for age, gender, smoking and hs-CRP  
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